Mass spectrometry-based metabolomics for the elucidation of alkaloid biosynthesis and function in invasive Vincetoxicum rossicum populations Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The genus Vincetoxicum includes a couple of highly invasive vines in North America that threaten biodiversity and challenge land management strategies. Vincetoxicum species are known to produce bioactive phenanthroindolizidine alkaloids that might play a role in the invasiveness of these plants via chemical interactions with other organisms. Untargeted, high-resolution mass spectrometry-based metabolomics approaches were used to explore specialized metabolism in Vincetoxicum plants collected from invaded sites in Ontario, Canada. All metabolites corresponding to alkaloids in lab and field samples of V. rossicum and V. nigrum were identified, which collectively contained 25 different alkaloidal features. The biosynthesis of these alkaloids was investigated by the incorporation of the stable isotope-labelled phenylalanine precursor providing a basis for an updated biosynthetic pathway accounting for the rapid generation of chemical diversity in invasive Vincetoxicum. Aqueous extracts of aerial Vincetoxicum rossicum foliage had phytotoxic activity against seedlings of several species, resulting in identification of tylophorine as a phytotoxin; tylophorine and 14 other alkaloids from Vincetoxicum accumulated in soils associated with full-sun and a high-density of V. rossicum. Using desorption-electrospray ionization mass spectrometry, 15 alkaloids were found to accumulate at wounded sites of V. rossicum leaves, a chemical cocktail that would be encountered by feeding herbivores. Understanding the specialized metabolism of V. rossicum provides insight into the roles and influences of phenanthroindolizidine alkaloids in ecological systems and enables potential, natural product-based approaches for the control of invasive Vincetoxicum and other weedy species.

publication date

  • May 2024