Home
Scholarly Works
The Origin and Evolution of the Mass-Metallicity...
Preprint

The Origin and Evolution of the Mass-Metallicity Relationship for Galaxies: Results from Cosmological N-Body Simulations

Abstract

We examine the origin and evolution of the mass-metallicity relationship (MZR, M-Z) for galaxies using high resolution cosmological SPH + N-Body simulations that include a physically motivated description of supernovae feedback and subsequent metal enrichment. We discriminate between two sources that may contribute to the origin of the MZR: 1) metal and baryon loss due to gas outflow, or 2) inefficient star formation at the lowest galaxy masses. Our simulated galaxies reproduce the observed MZR in shape and normalization both at z=0 and z=2. We find that baryon loss occurs due to UV heating before star formation turns on in galaxies with M_baryon < 10^8 M_sun, but that some gas loss due to supernovae induced winds is required to subsequently reproduce the low effective chemical yield observed in low mass galaxies. Despite this, we show that low star formation efficiencies, regulated by supernovae feedback, are primarily responsible for the lower metallicities of low mass galaxies and the overall M-Z trend. We find that the shape of the MZR is relatively constant with redshift, but that its normalization increases with time. Simulations with no energy feedback from supernovae overproduce metals at low galaxy masses by rapidly transforming a large fraction of their gas into stars. Despite the fact that our low mass galaxies have lost a majority of their baryons, they are still the most gas rich objects in our simulations due to their low star formation efficiencies.

Authors

Brooks AM; Governato F; Booth CM; Willman B; Gardner JP; Wadsley J; Stinson G; Quinn T

Publication date

September 21, 2006

DOI

10.48550/arxiv.astro-ph/0609620

Preprint server

arXiv
View published work (Non-McMaster Users)

Contact the Experts team