β-Cell miRNA-503-5p Induced by Hypomethylation and Inflammation Promotes Insulin Resistance and β-Cell Decompensation Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Chronic inflammation promotes pancreatic β-cell decompensation to insulin resistance because of local accumulation of supraphysiologic interleukin 1β (IL-1β) levels. However, the underlying molecular mechanisms remain elusive. We show that miR-503-5p is exclusively upregulated in islets from humans with type 2 diabetes and diabetic rodents because of its promoter hypomethylation and increased local IL-1β levels. β-Cell–specific miR-503 transgenic mice display mild or severe diabetes in a time- and expression-dependent manner. By contrast, deletion of the miR-503 cluster protects mice from high-fat diet–induced insulin resistance and glucose intolerance. Mechanistically, miR-503-5p represses c-Jun N-terminal kinase–interacting protein 2 (JIP2) translation to activate mitogen-activated protein kinase signaling cascades, thus inhibiting glucose-stimulated insulin secretion (GSIS) and compensatory β-cell proliferation. In addition, β-cell miR-503-5p is packaged in nanovesicles to dampen insulin signaling transduction in liver and adipose tissues by targeting insulin receptors. Notably, specifically blocking the miR-503 cluster in β-cells effectively remits aging-associated diabetes through recovery of GSIS capacity and insulin sensitivity. Our findings demonstrate that β-cell miR-503-5p is required for the development of insulin resistance and β-cell decompensation, providing a potential therapeutic target against diabetes. Article Highlights Promoter hypomethylation during natural aging permits miR-503-5p overexpression in islets under inflammation conditions, conserving from rodents to humans. Impaired β-cells release nanovesicular miR-503-5p to accumulate in liver and adipose tissue, leading to their insulin resistance via the miR-503-5p/insulin receptor/phosphorylated AKT axis. Accumulated miR-503-5p in β-cells impairs glucose-stimulated insulin secretion via the JIP2-coordinated mitogen-activated protein kinase signaling cascades. Specific blockage of β-cell miR-503-5p improves β-cell function and glucose tolerance in aging mice.

authors

  • Zhou, Yuncai
  • Liu, Kerong
  • Tang, Wei
  • Zhang, Yan
  • Sun, Yi
  • Wu, Yangyang
  • Shi, Ying
  • Yao, Zhengjian
  • Li, Yating
  • Bai, Rongjie
  • Liang, Rui
  • Sun, Peng
  • Chang, Xiaoai
  • Wang, Shusen
  • Zhu, Yunxia
  • Han, Xiao

publication date

  • January 1, 2024