An inaccuracy measure between non-explosive point processes with applications to Markov chains Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractInaccuracy and information measures based on cumulative residual entropy are quite useful and have received considerable attention in many fields, such as statistics, probability, and reliability theory. In particular, many authors have studied cumulative residual inaccuracy between coherent systems based on system lifetimes. In a previous paper (Bueno and Balakrishnan, Prob. Eng. Inf. Sci.36, 2022), we discussed a cumulative residual inaccuracy measure for coherent systems at component level, that is, based on the common, stochastically dependent component lifetimes observed under a non-homogeneous Poisson process. In this paper, using a point process martingale approach, we extend this concept to a cumulative residual inaccuracy measure between non-explosive point processes and then specialize the results to Markov occurrence times. If the processes satisfy the proportional risk hazard process property, then the measure determines the Markov chain uniquely. Several examples are presented, including birth-and-death processes and pure birth process, and then the results are applied to coherent systems at component level subject to Markov failure and repair processes.

publication date

  • June 2024