SPRINT: Ultrafast protein-protein interaction prediction of the entire human interactome
Abstract
Proteins perform their functions usually by interacting with other proteins.
Predicting which proteins interact is a fundamental problem. Experimental
methods are slow, expensive, and have a high rate of error. Many computational
methods have been proposed among which sequence-based ones are very promising.
However, so far no such method is able to predict effectively the entire human
interactome: they require too much time or memory. We present SPRINT (Scoring
PRotein INTeractions), a new sequence-based algorithm and tool for predicting
protein-protein interactions. We comprehensively compare SPRINT with
state-of-the-art programs on seven most reliable human PPI datasets and show
that it is more accurate while running orders of magnitude faster and using
very little memory. SPRINT is the only program that can predict the entire
human interactome. Our goal is to transform the very challenging problem of
predicting the entire human interactome into a routine task. The source code of
SPRINT is freely available from github.com/lucian-ilie/SPRINT/ and the datasets
and predicted PPIs from www.csd.uwo.ca/faculty/ilie/SPRINT/.