Ultrastructure and Nanoporosity of Human Bone Shown with Correlative On-Axis Electron and Spectroscopic Tomographies
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Mineralized collagen fibrils are the building block units of bone at the nanoscale. While it is known that collagen fibrils are mineralized both inside their gap zones (intra-fibrillar mineralization) and on their outer surfaces (extra-fibrillar mineralization), a clear visualization of this architecture in three dimensions (3D), combining structural and compositional information over large volumes, but without compromising the resolution, remains challenging. In this study, we demonstrate the use of on-axis Z-contrast electron tomography (ET) with correlative energy-dispersive X-ray spectroscopy (EDX) tomography to examine rod-shaped samples with diameters up to 700 nm prepared from individual osteonal lamellae in the human femur. Our work mainly focuses on two aspects: (i) low-contrast nanosized circular spaces ("holes") observed in sections of bone oriented perpendicular to the long axis of a long bone, and (ii) extra-fibrillar mineral, especially in terms of morphology and spatial relationship with respect to intra-fibrillar mineral and collagen fibrils. From our analyses, it emerges quite clearly that most "holes" are cross-sectional views of collagen fibrils. While this had been postulated before, our 3D reconstructions and reslicing along meaningful two-dimensional (2D) cross-sections provide a direct visual confirmation. Extra-fibrillar mineral appears to be composed of thin plates that are interconnected and span over several collagen fibrils, confirming that mineralization is cross-fibrillar, at least for the extra-fibrillar phase. EDX tomography shows mineral signatures (Ca and P) within the gap zones, but the signal appears weaker than that associated with the extra-fibrillar mineral, pointing toward the existence of dissimilarities between the two types of mineralization.