Characterization of subsurface pathways contributing to freshwater salinization of urban streams using electrical and electromagnetic imaging techniques Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Salinization of inland fresh surface waters in temperate climates is a growing concern due to increasing salt inputs from sources including chloride (Cl)-containing road salt de-icers, industrial waste, and landfill leachate. Groundwater pathways play an important role in the year-round delivery of Cl to streams, but quantifying this pathway, including spatiotemporal variability and amount of Cl mass stored in the subsurface, is challenging. The objective of this study was to demonstrate, evaluate, and compare the potential applications of the geoelectrical techniques - electromagnetics (EM) and direct current (DC) resistivity - for mapping salt contamination in shallow urban groundwater and characterizing the groundwater pathways delivering Cl to urban streams. EM and DC surveys were conducted (3D mapping and 2D time-lapse) across a 20 m salt-impacted stream section and surrounding riparian zone that is located near an arterial road and parking lot. Groundwater samples and soil cores were also collected to validate the geoelectrical results. Both the EM and DC surveys detected high salt concentrations in the shallow subsurface (up to 3 m depth) near the road, parking lot, and stream; however, DC more accurately represented groundwater Cl concentrations. DC results were used to calculate the total Cl mass in the subsurface, with the spatial mass distribution used to infer the temporal variability in the subsurface salt plume. Finally, time-lapse DC showed that the highest groundwater salt concentrations existed near the stream between June and October - this is expected to contribute to the elevated salt concentrations in the stream during summer months. This study has shown that EM and DC can be useful for identifying groundwater salt concentration, storage, and transport in a non-intrusive and efficient manner, making them valuable field tools for characterizing and quantifying groundwater salt pathways to urban streams.

authors

  • Hodgins, Grant
  • Robinson, Clare E
  • Roy, James W
  • Power, Christopher

publication date

  • December 2023