Examination of recent hydroelectric dam projects in Canada for alignment of baseline studies, predictive modeling, and postdevelopment monitoring phases of aquatic environmental impact assessments Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractEnvironmental impact assessment (EIA) has been widely criticized by the aquatic science community for poorly aligned approaches when selecting endpoints and collecting data during the baseline, predictive modeling, and postdevelopment monitoring phases. If these critical phases of the EIA process are not aligned properly, it can be difficult to evaluate the presence of postdevelopment effects. Examples of the misalignment of these phases include baseline studies failing to measure indicators that are monitored postdevelopment; predictive assessments that do not quantitatively predict conditions or potential impacts postdevelopment; and the failure to identify relevant indicators that may detect effects postdevelopment. For aquatic assessments, understanding how to protect critical ecosystem attributes to satisfy regulatory concerns could help to better align aquatic science monitoring activities across EIA phases. In this article we investigate recent Canadian hydroelectric dam EIAs to evaluate how well recent assessment approaches are meeting these necessary conditions of good aquatic EIA practice through the lens of ecosystem services from a fish's perspective. We found that larger facilities generally had baseline studies and modeling that better supported postdevelopment monitoring, but improvements in structure, linkages, and expectations would better align EIA phases in a manner that would improve assessments and environmental protection. Integr Environ Assess Manag 2024;20:616–644. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

publication date

  • May 2024