Cylindrical spirals and other concentric structures of skeletal muscle in patients with neurological diseases Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Cylindrical spirals (CSs) are ultrastructurally distinct, intracytoplasmic inclusions characterized by concentrically wrapped lamellae, which are rarely found in skeletal muscle biopsies on electron microscopy (EM). CSs are often confused with other EM concentric structures including concentric laminated bodies and mitochondrial concentric cristae (MCC), due to similarities in these ultrastructures. In this study, we found CSs in 9 muscle biopsies from 9 patients, accounting for 0.5% of the biopsies examined routinely by EM. The frequency of CSs in these muscles varied from sparse and segregated to focally frequent and aggregated. CS-associated features included muscle fiber denervation atrophy in all 9 cases, fiber type grouping in 7/8 cases, tubular aggregates in 3/9 cases, and MCC in 2/9 cases. We also compared the concentric structures and highlighted their differences to distinguish CSs from other similar structures. Clinically, 8 out of 9 patients were adults aged 41-74 years and only one patient was 17 month-old. CSs were associated with several neurological diseases including Huntington's disease, amyotrophic lateral sclerosis, Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes, and other complex neurological disorders with neuropathy/encephalopathy, as well as anti-MDA5+ dermatomyositis. Eight of nine patients had genetic findings such as trinucleotide repeat expansion of huntingtin gene, ALS2 variant, MT-TL1 m.3243A > G mutation, and PMP 22 gene deletion. These results suggest that CSs may be highly variable in frequency and likely are under-reported/under-detected; they may be associated with neurogenic myopathy or central/peripheral nervous system disorders including some genetic neurological/neuromuscular diseases. Our findings of more CS-associated neurological diseases and an association of CSs with muscle neurogenic features may contribute to a better understanding of the clinico-pathological significance of CSs.

publication date

  • August 2023