Home
Scholarly Works
Universal power law for the energy spectrum of...
Preprint

Universal power law for the energy spectrum of breaking Riemann waves

Abstract

The universal power law for the spectrum of one-dimensional breaking Riemann waves is justified for the simple wave equation. The spectrum of spatial amplitudes at the breaking time $t = t_b$ has an asymptotic decay of $k^{-4/3}$, with corresponding energy spectrum decaying as $k^{-8/3}$. This spectrum is formed by the singularity of the form $(x-x_b)^{1/3}$ in the wave shape at the breaking time. This result remains valid for arbitrary nonlinear wave speed. In addition, we demonstrate numerically that the universal power law is observed for long time in the range of small wave numbers if small dissipation or dispersion is accounted in the viscous Burgers or Korteweg-de Vries equations.

Authors

Pelinovsky D; Pelinovsky E; Kartashova E; Talipova T; Giniyatullin A

Publication date

June 30, 2013

DOI

10.48550/arxiv.1307.0248

Preprint server

arXiv
View published work (Non-McMaster Users)

Contact the Experts team