Home
Scholarly Works
Spectrum of a non-self-adjoint operator associated...
Preprint

Spectrum of a non-self-adjoint operator associated with the periodic heat equation

Abstract

We study the spectrum of the linear operator $L = - \partial_{\theta} - \epsilon \partial_{\theta} (\sin \theta \partial_{\theta})$ subject to the periodic boundary conditions on $\theta \in [-\pi,\pi]$. We prove that the operator is closed in $L^2([-\pi,\pi])$ with the domain in $H^1_{\rm per}([-\pi,\pi])$ for $|\epsilon| < 2$, its spectrum consists of an infinite sequence of isolated eigenvalues and the set of corresponding eigenfunctions is complete. By using numerical approximations of eigenvalues and eigenfunctions, we show that all eigenvalues are simple, located on the imaginary axis and the angle between two subsequent eigenfunctions tends to zero for larger eigenvalues. As a result, the complete set of linearly independent eigenfunctions does not form a basis in $H^1_{\rm per}([-\pi,\pi])$.

Authors

Chugunova M; Pelinovsky D

Publication date

February 28, 2007

DOI

10.48550/arxiv.math-ph/0702100

Preprint server

arXiv

Labels

View published work (Non-McMaster Users)

Contact the Experts team