Home
Scholarly Works
Linear instability of breathers for the focusing...
Preprint

Linear instability of breathers for the focusing nonlinear Schrödinger equation

Abstract

Relying upon tools from the theory of integrable systems, we discuss the linear instability of the Kuznetsov-Ma breathers and the Akhmediev breathers of the focusing nonlinear Schrödinger equation. We use the Darboux transformation to construct simultaneously the breathers and the exact solutions of the Lax system associated with the breathers. We obtain a full description of the Lax spectra for the two breathers, including multiplicities of eigenvalues. Solutions of the linearized NLS equations are then obtained from the eigenfunctions and generalized eigenfunctions of the Lax system. While we do not attempt to prove completeness of eigenfunctions, we aim to determine the entire set of solutions of the linearized NLS equations generated by the Lax system in appropriate function spaces.

Authors

Haragus M; Pelinovsky D

Publication date

December 29, 2021

DOI

10.48550/arxiv.2112.14426

Preprint server

arXiv
View published work (Non-McMaster Users)

Contact the Experts team