Home
Scholarly Works
KP-II approximation for a scalar FPU system on a...
Preprint

KP-II approximation for a scalar FPU system on a 2D square lattice

Abstract

We consider a scalar Fermi-Pasta-Ulam (FPU) system on a square 2D lattice. The Kadomtsev-Petviashvili (KP-II) equation can be derived by means of multiple scale expansions to describe unidirectional long waves of small amplitude with slowly varying transverse modulations. We show that the KP-II approximation makes correct predictions about the dynamics of the original scalar FPU system. An existing approximation result is extended to an arbitrary direction of wave propagation. The main novelty of this work is the use of Fourier transform in the analysis of the FPU system in strain variables.

Authors

Pelinovsky DE; Schneider G

Publication date

July 20, 2022

DOI

10.48550/arxiv.2207.10142

Preprint server

arXiv

Labels

View published work (Non-McMaster Users)

Contact the Experts team