Home
Scholarly Works
Integral laminations on non-orientable surfaces
Preprint

Integral laminations on non-orientable surfaces

Abstract

We describe triangle coordinates for integral laminations on a non-orientable surface $N_{k,n}$ of genus $k$ with $n$ punctures and one boundary component, and give an explicit bijection from the set of integral laminations on $N_{k,n}$ to $(\mathbb{Z}^{2(n+k-2)}\times \mathbb{Z}^k)\setminus \left\{0\right\}$.

Authors

Yurttaş SÖ; Pamuk M

Publication date

August 22, 2016

DOI

10.48550/arxiv.1608.06078

Preprint server

arXiv
View published work (Non-McMaster Users)

Contact the Experts team