Calibrated Sub-Bundles in Non-Compact Manifolds of Special Holonomy
Abstract
This paper is a continuation of math.DG/0408005. We first construct special
Lagrangian submanifolds of the Ricci-flat Stenzel metric (of holonomy SU(n)) on
the cotangent bundle of S^n by looking at the conormal bundle of appropriate
submanifolds of S^n. We find that the condition for the conormal bundle to be
special Lagrangian is the same as that discovered by Harvey-Lawson for
submanifolds in R^n in their pioneering paper. We also construct calibrated
submanifolds in complete metrics with special holonomy G_2 and Spin(7)
discovered by Bryant and Salamon on the total spaces of appropriate bundles
over self-dual Einstein four manifolds. The submanifolds are constructed as
certain subbundles over immersed surfaces. We show that this construction
requires the surface to be minimal in the associative and Cayley cases, and to
be (properly oriented) real isotropic in the coassociative case. We also make
some remarks about using these constructions as a possible local model for the
intersection of compact calibrated submanifolds in a compact manifold with
special holonomy.