Home
Scholarly Works
A Liouville Theorem for Möbius Invariant Equations
Journal article

A Liouville Theorem for Möbius Invariant Equations

Abstract

In this paper, we classify Möbius invariant differential operators of second order in two-dimensional Euclidean space, and establish a Liouville type theorem for general Möbius invariant elliptic equations. The equations are naturally associated with a continuous family of convex cones Γp$$\Gamma _p$$ in R2$$\mathbb R^2$$, with parameter p∈[1,2]$$p\in [1, 2]$$, joining the half plane Γ1:={(λ1,λ2):λ1+λ2>0}$$\Gamma _1:=\{ (\lambda _1, \lambda _2):\lambda _1+\lambda _2>0\}$$ and the first quadrant Γ2:={(λ1,λ2):λ1,λ2>0}$$\Gamma _2:=\{ (\lambda _1, \lambda _2):\lambda _1, \lambda _2>0\}$$. Chen and C. M. Li established in 1991 a Liouville type theorem corresponding to Γ1$$\Gamma _1$$ under an integrability assumption on the solution. The uniqueness result does not hold without this assumption. The Liouville type theorem we establish in this paper for Γp$$\Gamma _p$$, 1

Authors

Li Y; Lu H; Lu S

Journal

Peking Mathematical Journal, Vol. 6, No. 2, pp. 609–634

Publisher

Springer Nature

Publication Date

September 1, 2023

DOI

10.1007/s42543-021-00043-9

ISSN

2096-6075

Contact the Experts team