Home
Scholarly Works
Partial Uncertainty and Applications to...
Preprint

Partial Uncertainty and Applications to Risk-Averse Valuation

Abstract

This paper introduces an intermediary between conditional expectation and conditional sublinear expectation, called R-conditioning. The R-conditioning of a random-vector in $L^2$ is defined as the best $L^2$-estimate, given a $\sigma$-subalgebra and a degree of model uncertainty. When the random vector represents the payoff of derivative security in a complete financial market, its R-conditioning with respect to the risk-neutral measure is interpreted as its risk-averse value. The optimization problem defining the optimization R-conditioning is shown to be well-posed. We show that the R-conditioning operators can be used to approximate a large class of sublinear expectations to arbitrary precision. We then introduce a novel numerical algorithm for computing the R-conditioning. This algorithm is shown to be strongly convergent. Implementations are used to compare the risk-averse value of a Vanilla option to its traditional risk-neutral value, within the Black-Scholes-Merton framework. Concrete connections to robust finance, sensitivity analysis, and high-dimensional estimation are all treated in this paper.

Authors

Kratsios A

Publication date

September 30, 2019

DOI

10.48550/arxiv.1909.13610

Preprint server

arXiv
View published work (Non-McMaster Users)

Contact the Experts team