Home
Scholarly Works
Vortices for computing: the engines of turbulence...
Chapter

Vortices for computing: the engines of turbulence simulation

Abstract

Vortices have been described as the “sinews of turbulence”. They are also, increasingly, the computational engines driving numerical simulations of turbulence. In this paper, I review some recent advances in vortex-based numerical methods for simulating high Reynolds number turbulent flows. I focus on coherent vortex simulation, where nonlinear wavelet filtering is used to identify and track the few high energy multiscale vortices that dominate the flow dynamics. This filtering drastically reduces the computational complexity for high Reynolds number simulations, e.g. by a factor of 1000 for fluid–structure interaction calculations (Kevlahan and Vasilyevvon in SIAM J Sci Comput 26(6):1894–1915, 2005). It also has the advantage of decomposing the flow into two physically important components: coherent vortices and background noise. In addition to its computational efficiency, this decomposition provides a way of directly estimating how space and space–time intermittency scales with Reynolds number, Reα. Comparing αto its non-intermittent values gives a realistic Reynolds number upper bound for adaptive direct numerical simulation of turbulent flows. This direct measure of intermittency also guides the development of new mathematical theories for the structure of high Reynolds number turbulence.

Authors

Kevlahan N

Book title

150 Years of Vortex Dynamics

Series

Iutam Bookseries

Volume

20

Pagination

pp. 257-261

Publisher

Springer Nature

Publication Date

January 1, 2009

DOI

10.1007/978-90-481-8584-9_30
View published work (Non-McMaster Users)

Contact the Experts team