Electrical conduction of silicon oxide containing silicon quantum dots
Abstract
Current-voltage measurements have been made at room temperature on a Si-rich
silicon oxide film deposited via Electron-Cyclotron Resonance Plasma Enhanced
Chemical Vapor Deposition (ECR-PECVD) and annealed at 750 - 1000$ ^\circ$C. The
thickness of oxide between Si quantum dots embedded in the film increases with
the increase of annealing temperature. This leads to the decrease of current
density as the annealing temperature is increased. Assuming the Fowler-Nordheim
tunneling mechanism in large electric fields, we obtain an effective barrier
height $\phi_{eff}$ of $\sim$ 0.7 $\pm$ 0.1 eV for an electron tunnelling
through an oxide layer between Si quantum dots. The Frenkel-Poole effect can
also be used to adequately explain the electrical conduction of the film under
the influence of large electric fields. We suggest that at room temperature Si
quantum dots can be regarded as traps that capture and emit electrons by means
of tunneling.
Authors
Pi XD; Zalloum OHY; Knights AP; Mascher P; Simpson PJ