Home
Scholarly Works
Four Skewed Tensor Distributions
Preprint

Four Skewed Tensor Distributions

Abstract

With the rise of the "big data" phenomenon in recent years, data is coming in many different complex forms. One example of this is multi-way data that come in the form of higher-order tensors such as coloured images and movie clips. Although there has been a recent rise in models for looking at the simple case of three-way data in the form of matrices, there is a relative paucity of higher-order tensor variate methods. The most common tensor distribution in the literature is the tensor variate normal distribution; however, its use can be problematic if the data exhibit skewness or outliers. Herein, we develop four skewed tensor variate distributions which to our knowledge are the first skewed tensor distributions to be proposed in the literature, and are able to parameterize both skewness and tail weight. Properties and parameter estimation are discussed, and real and simulated data are used for illustration.

Authors

Gallaugher MPB; Tait PA; McNicholas PD

Publication date

June 16, 2021

DOI

10.48550/arxiv.2106.08984

Preprint server

arXiv
View published work (Non-McMaster Users)

Contact the Experts team