Optimal Relay Selection for Physical-Layer Security in Cooperative Wireless Networks
Abstract
In this paper, we explore the physical-layer security in cooperative wireless
networks with multiple relays where both amplify-and-forward (AF) and
decode-and-forward (DF) protocols are considered. We propose the AF and DF
based optimal relay selection (i.e., AFbORS and DFbORS) schemes to improve the
wireless security against eavesdropping attack. For the purpose of comparison,
we examine the traditional AFbORS and DFbORS schemes, denoted by T-AFbORS and
TDFbORS, respectively. We also investigate a so-called multiple relay combining
(MRC) framework and present the traditional AF and DF based MRC schemes, called
T-AFbMRC and TDFbMRC, where multiple relays participate in forwarding the
source signal to destination which then combines its received signals from the
multiple relays. We derive closed-form intercept probability expressions of the
proposed AFbORS and DFbORS (i.e., P-AFbORS and P-DFbORS) as well as the
T-AFbORS, TDFbORS, T-AFbMRC and T-DFbMRC schemes in the presence of
eavesdropping attack. We further conduct an asymptotic intercept probability
analysis to evaluate the diversity order performance of relay selection schemes
and show that no matter which relaying protocol is considered (i.e., AF and
DF), the traditional and proposed optimal relay selection approaches both
achieve the diversity order M where M represents the number of relays. In
addition, numerical results show that for both AF and DF protocols, the
intercept probability performance of proposed optimal relay selection is
strictly better than that of the traditional relay selection and multiple relay
combining methods.