Security versus Reliability Analysis of Opportunistic Relaying
Abstract
Physical-layer security is emerging as a promising paradigm of securing
wireless communications against eavesdropping between legitimate users, when
the main link spanning from source to destination has better propagation
conditions than the wiretap link from source to eavesdropper. In this paper, we
identify and analyze the tradeoffs between the security and reliability of
wireless communications in the presence of eavesdropping attacks. Typically,
the reliability of the main link can be improved by increasing the source's
transmit power (or decreasing its date rate) to reduce the outage probability,
which unfortunately increases the risk that an eavesdropper succeeds in
intercepting the source message through the wiretap link, since the outage
probability of the wiretap link also decreases when a higher transmit power (or
lower date rate) is used. We characterize the security-reliability tradeoffs
(SRT) of conventional direct transmission from source to destination in the
presence of an eavesdropper, where the security and reliability are quantified
in terms of the intercept probability by an eavesdropper and the outage
probability experienced at the destination, respectively. In order to improve
the SRT, we then propose opportunistic relay selection (ORS) and quantify the
attainable SRT improvement upon increasing the number of relays. It is shown
that given the maximum tolerable intercept probability, the outage probability
of our ORS scheme approaches zero for $N \to \infty$, where $N$ is the number
of relays. Conversely, given the maximum tolerable outage probability, the
intercept probability of our ORS scheme tends to zero for $N \to \infty$.