The non-centrosymmetric lamellar phase in blends of ABC triblock and ac diblock copolymers
Abstract
The phase behaviour of blends of ABC triblock and ac diblock copolymers is
examined using self-consistent field theory. Several equilibrium lamellar
structures are observed, depending on the volume fraction of the diblocks,
phi_2, the monomer interactions, and the degrees of polymerization of the
copolymers. For segregations just above the order-disorder transition the
triblocks and diblocks mix together to form centrosymmetric lamellae. As the
segregation is increased the triblocks and diblocks spatially separate either
by macrophase-separating, or by forming a non-centrosymmetric (NCS) phase of
alternating layers of triblock and diblock (...ABCcaABCca...). The NCS phase is
stable over a narrow region near phi_2=0.4. This region is widest near the
critical point on the phase coexistence curve and narrows to terminate at a
triple point at higher segregation. Above the triple point there is two-phase
coexistence between almost pure triblock and diblock phases. The theoretical
phase diagram is consistent with experiments.