Massive star formation via high accretion rates and early disk-driven outflows
Abstract
We present an investigation of massive star formation that results from the
gravitational collapse of massive, magnetized molecular cloud cores. We
investigate this by means of highly resolved, numerical simulations of initial
magnetized Bonnor-Ebert-Spheres that undergo collapse and cooling. By comparing
three different cases - an isothermal collapse, a collapse with radiative
cooling, and a magnetized collapse - we show that massive stars assemble
quickly with mass accretion rates exceeding 10^-3 Msol/yr. We confirm that the
mass accretion during the collapsing phase is much more efficient than
predicted by selfsimilar collapse solutions, i.e. dM/dt ~ c^3/G. We find that
during protostellar assembly the mass accretion reaches 20 - 100 c^3/G.
Furthermore, we determined the self-consistent structure of bipolar outflows
that are produced in our three dimensional magnetized collapse simulations.
These outflows produce cavities out of which radiation pressure can be
released, thereby reducing the limitations on the final mass of massive stars
formed by gravitational collapse. Moreover, we argue that the extraction of
angular momentum by disk-threaded magnetic fields and/or by the appearance of
bars with spiral arms significantly enhance the mass accretion rate, thereby
helping the massive protostar to assemble more quickly.