Home
Scholarly Works
Boundaries, Mirror Symmetry, and Symplectic...
Preprint

Boundaries, Mirror Symmetry, and Symplectic Duality in 3d $\mathcal{N}=4$ Gauge Theory

Abstract

We introduce several families of $\mathcal{N}=(2,2)$ UV boundary conditions in 3d $\mathcal N=4$ gauge theories and study their IR images in sigma-models to the Higgs and Coulomb branches. In the presence of Omega deformations, a UV boundary condition defines a pair of modules for quantized algebras of chiral Higgs- and Coulomb-branch operators, respectively, whose structure we derive. In the case of abelian theories, we use the formalism of hyperplane arrangements to make our constructions very explicit, and construct a half-BPS interface that implements the action of 3d mirror symmetry on gauge theories and boundary conditions. Finally, by studying two-dimensional compactifications of 3d $\mathcal{N}=4$ gauge theories and their boundary conditions, we propose a physical origin for symplectic duality - an equivalence of categories of modules associated to families of Higgs and Coulomb branches that has recently appeared in the mathematics literature, and generalizes classic results on Koszul duality in geometric representation theory. We make several predictions about the structure of symplectic duality, and identify Koszul duality as a special case of wall crossing.

Authors

Bullimore M; Dimofte T; Gaiotto D; Hilburn J

Publication date

March 28, 2016

DOI

10.48550/arxiv.1603.08382

Preprint server

arXiv
View published work (Non-McMaster Users)

Contact the Experts team