c-axis Josephson Tunnelling in Twinned and Untwinned YBCO-Pb Junctions
Abstract
Within a microscopic two band model of planes and chains with a pairing
potential in the planes and off diagonal pairing between planes and chains we
find that the chains make the largest contribution to the Josephson tunnelling
current and that through them the d-wave part of the gap contributes to the
current. This is contrary to the usual assumption that for a d-wave tetragonal
superconductor the c-axis Josephson current for incoherent tunnelling into an
s-wave superconductor is zero while that of a d-wave orthorhombic
superconductor with a small s-wave component to its gap it is small but
non-zero. Nevertheless it has been argued that the effect of twins in YBCO
would lead to cancellation between pairs of twins and so the observation of a
current in c-axis YBCO-Pb experiments is evidence against a d-wave type order
parameter. We argue that both theory and experiment give evidence that the two
twin orientations are not necessarily equally abundant and that the ratio of
tunnelling currents in twinned and untwinned materials should be related to the
relative abundance of the two twin orientations.