We address the question of constructing simple inviscid vortex models which
optimally approximate realistic flows as solutions of an inverse problem.
Assuming the model to be incompressible, inviscid and stationary in the frame
of reference moving with the vortex, the "structure" of the vortex is uniquely
characterized by the functional relation between the streamfunction and
vorticity. It is demonstrated how the inverse problem of reconstructing this
functional relation from data can be framed as an optimization problem which
can be efficiently solved using variational techniques. In contrast to earlier
studies, the vorticity function defining the streamfunction-vorticity relation
is reconstructed in the continuous setting subject to a minimum number of
assumptions. To focus attention, we consider flows in 3D axisymmetric geometry
with vortex rings. To validate our approach, a test case involving Hill's
vortex is presented in which a very good reconstruction is obtained. In the
second example we construct an optimal inviscid vortex model for a realistic
flow in which a more accurate vorticity function is obtained than produced
through an empirical fit. When compared to available theoretical vortex-ring
models, our approach has the advantage of offering a good representation of
both the vortex structure and its integral characteristics.