Transpulmonary thermodilution for hemodynamic measurements in severely burned children Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • INTRODUCTION: Monitoring of hemodynamic and volumetric parameters after severe burns is of critical importance. Pulmonary artery catheters, however, have been associated with many risks. Our aim was to show the feasibility of continuous monitoring with minimally invasive transpulmonary thermodilution (TPTD) in severely burned pediatric patients. METHODS: This prospective cohort study was conducted in patients with severe burns over 40% of the total body surface area (TBSA) who were admitted to the hospital within 96 hours after sustaining the injury. TPTD measurements were performed using the PiCCO system (Pulsion Medical Systems, Munich, Germany). Cardiac Index (CI), Intrathoracic Blood Volume Index (ITBVI) (Stewart-Hamilton equation), Extravascular Lung Water Index (EVLWI) and Systemic Vascular Resistance Index (SVRI) measurements were recorded twice daily. Statistical analysis was performed using one-way repeated measures analysis of variance with the post hoc Bonferroni test for intra- and intergroup comparisons. RESULTS: Seventy-nine patients with a mean age (±SD) of 9 ± 5 years and a mean TBSA burn (±SD) of 64% ± 20% were studied. CI significantly increased compared to level at admission and was highest 3 weeks postburn. ITBVI increased significantly starting at 8 days postburn. SVRI continuously decreased early in the perioperative burn period. EVLWI increased significantly starting at 9 days postburn. Young children (0 to 5 years old) had a significantly increased EVLWI and decreased ITBVI compared to older children (12 to 18 years old). EVLWI was significantly higher in patients who did not survive burn injury. CONCLUSIONS: Continuous PiCCO measurements were performed for the first time in a large cohort of severely burned pediatric patients. The results suggest that hyperdynamic circulation begins within the first week after burn injury and continues throughout the entire intensive care unit stay.

authors

  • Branski, Ludwik K
  • Herndon, David N
  • Byrd, Jaron F
  • Kinsky, Michael P
  • Lee, Jong O
  • Fagan, Shawn P
  • Jeschke, Marc

publication date

  • 2011

has subject area