Home
Scholarly Works
5.08 Preparation of magnetocaloric materials
Chapter

5.08 Preparation of magnetocaloric materials

Abstract

Magnetocaloric effect, MCE, is heating or cooling of a magnetic material upon application or removal of magnetic field. Materials that display a significant MCE, a temperature change a few degrees or more, are called magnetocaloric materials. A practically useful MCE is observed in ferromagnets around their Curie temperatures. Additionally, the effect is significantly increased when a ferromagnetic ordering is coupled to a structural transition; e.g., in Gd5Si2Ge2 the MCE entropy change associated with its magnetostructural transition is doubled in comparison to the purely magnetic entropy change. Materials with a large MCE can be used for magnetic refrigeration, a cooling technique that is more efficient than the conventional liquid-vapor refrigeration. Research in the magnetocaloric field focuses on the discovery of high-performance magnetocaloric materials. Due to the lack of a long-range order, amorphous materials display poor MCE properties and are not viable for industrial applications, thus synthesis of crystalline materials is pursued. Polycrystalline and single crystalline magnetocaloric materials can be prepared via a number of methods, similar to those used for intermetallic phases. Single crystals can be grown using Bridgman, tria-arc, recrystallization or flux techniques. Polycrystalline samples can be prepared via arc-melting, sintering, mechanical alloying, spark plasma sintering, solid-vapor and microwave synthesis.

Authors

Mozharivskyj Y

Book title

Comprehensive Inorganic Chemistry III

Pagination

pp. 178-198

Publisher

Elsevier

Publication Date

January 1, 2023

DOI

10.1016/b978-0-12-823144-9.00077-7
View published work (Non-McMaster Users)

Contact the Experts team