Bone structure and composition in a hyperglycemic, obese, and leptin receptor-deficient rat: Microscale characterization of femur and calvarium
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Metabolic abnormalities, such as diabetes mellitus and obesity, can impact bone quantity and/or bone quality. In this work, we characterize bone material properties, in terms of structure and composition, in a novel rat model with congenic leptin receptor (LepR) deficiency, severe obesity, and hyperglycemia (type 2 diabetes-like condition). Femurs and calvaria (parietal region) from 20-week-old male rats are examined to probe bones formed both by endochondral and intramembranous ossification. Compared to the healthy controls, the LepR-deficient animals display significant alterations in femur microarchitecture and in calvarium morphology when analyzed by micro-computed X-ray tomography (micro-CT). In particular, shorter femurs with reduced bone volume, combined with thinner parietal bones and shorter sagittal suture, point towards a delay in the skeletal development of the LepR-deficient rodents. On the other hand, LepR-deficient animals and healthy controls display analogous bone matrix composition, which is assessed in terms of tissue mineral density by micro-CT, degree of mineralization by quantitative backscattered electron imaging, and various metrics extrapolated from Raman hyperspectral images. Some specific microstructural features, i.e., mineralized cartilage islands in the femurs and hyper-mineralized areas in the parietal bones, also show comparable distribution and characteristics in both groups. Overall, the altered bone microarchitecture in the LepR-deficient animals indicates compromised bone quality, despite the normal bone matrix composition. The delayed development is also consistent with observations in humans with congenic Lep/LepR deficiency, making this animal model a suitable candidate for translational research.