Home
Scholarly Works
COMPUTING THE SPREADING AND COVERING NUMBERS
Journal article

COMPUTING THE SPREADING AND COVERING NUMBERS

Abstract

Let S = k[x 1,…,x n ], d a positive integer, and suppose that S D is the vector space of all polynomials of degree d in S. Define α n (d) ≔ max { dim k V| V monomial subspace of S d , dim k S 1 V = n dim k V} and ρ n (d +1) ≔ min {dim k V | V monomial subspace of S d , S 1 V = S d+1}. The numbers α n (d) and ρ n (d+ 1) are called the spreading numbers and covering numbers, respectively. We describe an approach to calculate these numbers that uses simplicial complexes.

Authors

Carlini E; Hà HT; Van Tuyl A

Journal

Communications in Algebra, Vol. 29, No. 12, pp. 5687–5699

Publisher

Taylor & Francis

Publication Date

January 1, 2001

DOI

10.1081/agb-100107953

ISSN

0092-7872

Contact the Experts team