Experts has a new look! Let us know what you think of the updates.

Provide feedback
Home
Scholarly Works
Two weight Sobolev norm inequalities for smooth...
Journal article

Two weight Sobolev norm inequalities for smooth Calderón–Zygmund operators and doubling weights

Abstract

Let μ$$\mu $$ be a positive locally finite Borel measure on Rn$${\mathbb {R}}^{n}$$ that is doubling, and define the homogeneous Wsμ$$W^{s}\left( \mu \right) $$-Sobolev norm squared fWsμ2$$\left\| f\right\| _{W^{s}\left( \mu \right) }^{2}$$ of a function f∈Lloc2μ$$f\in L_{{\textrm{loc}}}^{2}\left( \mu \right) $$ by ∫Rn∫Rnfx-fyx-ys2dμxdμyBx+y2,x-y2μ,$$\begin{aligned} \int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\left( \frac{f\left( x\right) …

Authors

Sawyer ET; Wick BD

Journal

Mathematische Zeitschrift, Vol. 303, No. 4,

Publisher

Springer Nature

Publication Date

April 2023

DOI

10.1007/s00209-023-03220-x

ISSN

0025-5874