Journal article
The singular limit of a vector-valued reaction-diffusion process
Abstract
We study the asymptotic behaviour of the solution to the vector–valued reaction–diffusion equation ε∂tφ−ε△φ+1εW~,φ(φ)=0inΩT,\begin{equation*}\varepsilon {\partial _{t}}\varphi -\varepsilon \triangle \varphi + {\frac {1}{\varepsilon }} \tilde W_{,\varphi } (\varphi ) = 0 \quad \text { in } \Omega _{T}, \end{equation*} where φε=φ:ΩT:=(0,T)×Ω⟶R2\varphi _{\varepsilon }=\varphi :\Omega _{T}:=(0,T)\times \Omega \longrightarrow \mathbf {R}^{2}. We …
Authors
Bronsard L; Stoth B
Journal
Transactions of the American Mathematical Society, Vol. 350, No. 12, pp. 4931–4953
Publisher
American Mathematical Society (AMS)
Publication Date
1998
DOI
10.1090/s0002-9947-98-02020-0
ISSN
0002-9947