Influence of mold cavity thickness on electrical, morphological and thermal properties of polypropylene/carbon micromoldings Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Abstract In this work, a comparative study on the electrical conductivity (σ) and thermal properties of polypropylene (PP)/carbon microparts with different part thickness (namely, 0.85 and 0.50 mm) is reported. Two different types of carbon filler (i.e., CNT and CB) were adopted to study the efficacy of different carbon fillers in improving the σ of PP/carbon microparts. In general, the σ of 0.85 mm thickness microparts were higher than the 0.50 mm thickness microparts, regardless of the carbon filler type and testing directions. This suggested that higher shearing conditions that prevailed in the microinjection molding (μIM) process were unfavorable for the formation of intact conductive pathways in corresponding moldings, albeit the distribution of carbon fillers turned better with increasing shear rates, as confirmed by morphology observations. Differential scanning calorimetry results showed that prior thermomechanical histories (including melt blending and μIM) experienced by the polymer melts had an influence on the thermal behavior of subsequent moldings. Also, there existed a strong shear flow-induced crystallization of polymer chains during μIM because the crystallinity of microparts was higher than that of feed materials.

authors

publication date

  • May 25, 2023