Home
Scholarly Works
Destructive cure models with proportional hazards...
Journal article

Destructive cure models with proportional hazards lifetimes and associated likelihood inference

Abstract

In survival analysis, cure models have gained much importance due to rapid advancements in medical sciences. More recently, a subset of cure models, called destructive cure models, have been studied extensively under competing risks scenario wherein initial competing risks undergo a destructive process. In this article, we study destructive cure models by assuming a flexible weighted Poisson distribution (exponentially weighted Poisson, length biased Poisson and negative binomial distributions) for the initial number of competing causes and lifetimes of the susceptible individuals being defined by proportional hazards. The expectation-maximization (EM) algorithm and profile likelihood approach are made use of to estimate the model parameters. An extensive simulation study is carried out under various parameter settings to examine the properties of the models, and accuracy and the robustness of the proposed estimation technique. Effects of model mis-specification on the parameter estimates are also discussed in detail. For further illustration of the proposed methodology, a real-life cutaneous melanoma data set is analyzed.

Authors

Balakrishnan N; Barui S

Journal

Communications in Statistics Case Studies Data Analysis and Applications, Vol. 9, No. 1, pp. 16–50

Publisher

Taylor & Francis

Publication Date

January 2, 2023

DOI

10.1080/23737484.2023.2169210

ISSN

2373-7484

Labels

Contact the Experts team