The relationship between plasma potassium, muscle membrane excitability and force following quadriceps fatigue
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
To examine the simultaneous changes in plasma [K+], muscle excitability and force during fatigue, ten male adults (mean age = 22 +/- 0.5 years) held an isometric contraction of their right quadriceps muscle at an intensity of 30% maximum voluntary contraction (MVC) for 3 min. Femoral venous and brachial arterial [K+] were determined from serial samples drawn before, during, and for 15 min following the 3-min contraction. Each blood sample was synchronized with a maximal stimulation of the right femoral nerve to evoke a twitch and compound muscle action potential (M-wave). Immediately post-exercise, twitch torque was only 42% of baseline and femoral venous plasma [K+] had increased significantly from 4.02 +/- 0.08 mmol/l to 5.9 +/- 0.22 mmol/l. Femoral venous plasma lactate rose to a peak level of 10.0 +/- 0.8 mmol/l at 1 min post exercise. The recovery of the twitch torque was exponentially related to the recovery of femoral venous plasma [K+] (r2 = 0.93, P < 0.01). There was no evidence for any loss of muscle membrane excitability during the period of increased extracellular [K+], in fact, the M-waves tended to be potentiated in the early phases of the recovery period. These results suggest that muscle membrane excitability is maintained in spite of increased extracellular [K+] following fatigue induced by a sustained submaximal quadriceps contraction. However, the strong relationship between twitch torque and femoral venous plasma [K+] suggests that K+ may be exerting its effect distal to surface membrane action potential propagation, most likely in the T-tubular region.