Home
Scholarly Works
Exact distribution of the MLEs of the parameters...
Journal article

Exact distribution of the MLEs of the parameters and of the quantiles of two-parameter exponential distribution under hybrid censoring

Abstract

Epstein [Truncated life tests in the exponential case, Ann. Math. Statist. 25 (1954), pp. 555–564] introduced a hybrid censoring scheme (called Type-I hybrid censoring) and Chen and Bhattacharyya [Exact confidence bounds for an exponential parameter under hybrid censoring, Comm. Statist. Theory Methods 17 (1988), pp. 1857–1870] derived the exact distribution of the maximum-likelihood estimator (MLE) of the mean of a scaled exponential distribution based on a Type-I hybrid censored sample. Childs et al. [Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution, Ann. Inst. Statist. Math. 55 (2003), pp. 319–330] provided an alternate simpler expression for this distribution, and also developed analogous results for another hybrid censoring scheme (called Type-II hybrid censoring). The purpose of this paper is to derive the exact bivariate distribution of the MLE of the parameter vector of a two-parameter exponential model based on hybrid censored samples. The marginal distributions are derived and exact confidence bounds for the parameters are obtained. The results are also used to derive the exact distribution of the MLE of the pth quantile, as well as the corresponding confidence bounds. These exact confidence intervals are then compared with parametric bootstrap confidence intervals in terms of coverage probabilities. Finally, we present some numerical examples to illustrate the methods of inference developed here.

Authors

Childs A; Balakrishnan N; Chandrasekar B

Journal

Statistics, Vol. 46, No. 4, pp. 441–458

Publisher

Taylor & Francis

Publication Date

August 1, 2012

DOI

10.1080/02331888.2010.538476

ISSN

0233-1888

Labels

Contact the Experts team