Home
Scholarly Works
Study of light transport inside scintillation...
Journal article

Study of light transport inside scintillation crystals for PET detectors

Abstract

Scintillation crystal design is a critical component in positron emission tomography system development, which impacts a number of performance parameters including energy resolution, time resolution and spatial resolution. Our work aims to develop a generalized simulation tool to model the light transport inside scintillation crystals with good accuracy, taking into account surface treatments, reflectors, temporal dependence of scintillation decay, and comprehensive experimental validations. The simulation has been validated against both direct analytical calculation and experimental measurements. In this work, the studies were performed for a lutetium-yttrium oxyorthosilicate crystal of 3×3×20 mm(3) dimension coupled to a Hamamatsu silicon photomultiplier, with respect to light output, rise-time slope, energy resolution and time resolution. Four crystal surface treatment and reflector configurations were investigated: GroundMetal, GroundPaint, PolishMetal and PolishPaint. The experiments were performed to validate the Monte Carlo simulation results. The results indicate that the best time resolution (0.96±0.05 ns) and good energy resolution (10.6±0.4%) could be produced by using a polished surface with specular reflector, while the configuration of a polished surface with diffusive reflector produces the best energy resolution (10.2±0.9%). The results indicate that a polished surface with diffusive reflector achieves the best energy resolution (10.2±0.9%) for 511 keV high energy photons, and a polished surface with specular reflector achieves the best time resolution (0.96±0.05 ns) measured against a Hamamatsu fast photomultiplier tube. The ground surface treatment is not recommended for its inferior performance in terms of energy and time resolution. Possible explanations and future improvements to be made to the developed simulation tool are discussed.

Authors

Yang X; Downie E; Farrell T; Peng H

Journal

Physics in Medicine and Biology, Vol. 58, No. 7, pp. 2143–2161

Publisher

IOP Publishing

Publication Date

April 7, 2013

DOI

10.1088/0031-9155/58/7/2143

ISSN

0031-9155

Contact the Experts team