Home
Scholarly Works
Computer Simulations of Speckle in B-Scan Images
Journal article

Computer Simulations of Speckle in B-Scan Images

Abstract

The granularity or speckle in medical ultrasound images tends to mask the presence of small lesions. As well, artifactual filling in of anechoic regions such as cysts, reduces the diagnostic potential of the images. These effects depend not only on the acoustic properties of the tissue but also are strongly influenced by the imaging system, especially the transducer geometry. To study the effect of the transducer on the final B-scan image, a computer model has been developed simulating the interaction of ultrasound with a simple scattering medium. This model, incorporating the position dependence of the point response of the transducer, is based on single scattering from a collection of points positioned randomly in a three-dimensional volume. Using this approach, B-scan images showing speckle have been generated for different transducer geometries. Inclusion of a 2.6 mm void mimicking a cyst within the three-dimensional scattering volume has allowed us to predict the cyst contrast in the image for the different transducer systems. Experimental B-scan images of a scattering phantom were obtained using the different pulse echo systems. Quantitative assessment using first and second order statistics of the images shows good agreement between experiment and theory.

Authors

Foster DR; Arditi M; Foster FS; Patterson MS; Hunt JW

Journal

Ultrasonic Imaging, Vol. 5, No. 4, pp. 308–330

Publisher

SAGE Publications

Publication Date

January 1, 1983

DOI

10.1177/016173468300500403

ISSN

0161-7346

Contact the Experts team