Home
Scholarly Works
A dynamic model for ALA-PDT of skin: simulation of...
Journal article

A dynamic model for ALA-PDT of skin: simulation of temporal and spatial distributions of ground-state oxygen, photosensitizer and singlet oxygen

Abstract

Singlet oxygen (¹O₂) direct dosimetry and photosensitizer fluorescence photobleaching are being investigated and applied as dosimetric tools during 5-aminolevulinic acid (ALA)-induced protophorphyrin IX (PpIX) photodynamic therapy (PDT) of normal skin and skin cancers. The correlations of photosensitizer fluorescence and singlet oxygen luminescence (SOL) emission signals to ¹O2 distribution and cumulative ¹O₂dose are difficult to interpret because of the temporal and spatial variations of three essential components (light fluence rate, photosensitizer concentration and oxygen concentration) in PDT. A one-dimensional model is proposed in this paper to simulate the dynamic process of ALA-PDT of normal human skin in order to investigate the time-resolved evolution of PpIX, ground-state oxygen (³O₂and ¹O₂ distributions. The model incorporates a simplified three-layer semi-infinite skin tissue, Monte Carlo simulations of excitation light fluence and both PpIX fluorescence and SOL emission signals reaching the skin surface, ¹O₂-mediated photobleaching mechanism for updating PpIX, ³O₂ and ¹O₂ distributions after the delivery of each light dose increment, ground-state oxygen supply by diffusion from the atmosphere and perfusion from blood vessels, a cumulative ¹O₂-dependent threshold vascular response, and the initial non-uniform distribution of PpIX. The PpIX fluorescence simulated using this model is compared with clinical data reported by Cottrell et al (2008 Clin. Cancer Res. 14 4475-83) for a range of irradiances (10-150 mW cm⁻²). Except for the vascular response, one set of parameters is used to fit data at all irradiances. The time-resolved depth-dependent distributions of PpIX, ³O₂ and ¹O₂ at representative irradiances are presented and discussed in this paper, as well as the PDT-induced vascular response at different depths. Tissue hypoxia and shutdown of oxygen supply occur in the upper dermis, where PpIX is also preserved at the end of treatment.

Authors

Liu B; Farrell TJ; Patterson MS

Journal

Physics in Medicine and Biology, Vol. 55, No. 19, pp. 5913–5932

Publisher

IOP Publishing

Publication Date

October 7, 2010

DOI

10.1088/0031-9155/55/19/019

ISSN

0031-9155

Contact the Experts team