Home
Scholarly Works
Best linear unbiased estimators of parameters of a...
Journal article

Best linear unbiased estimators of parameters of a simple linear regression model based on ordered ranked set samples

Abstract

As an alternative to an estimation based on a simple random sample (BLUE-SRS) for the simple linear regression model, Moussa-Hamouda and Leone [E. Moussa-Hamouda and F.C. Leone, The o-blue estimators for complete and censored samples in linear regression, Technometrics, 16 (3) (1974), pp. 441–446.] discussed the best linear unbiased estimators based on order statistics (BLUE-OS), and showed that BLUE-OS is more efficient than BLUE-SRS for normal data. Using the ranked set sampling, Barreto and Barnett [M.C.M. Barreto and V. Barnett, Best linear unbiased estimators for the simple linear regression model using ranked set sampling. Environ. Ecoll. Stat. 6 (1999), pp. 119–133.] derived the best linear unbiased estimators (BLUE-RSS) for simple linear regression model and showed that BLUE-RSS is more efficient for the estimation of the regression parameters (intercept and slope) than BLUE-SRS for normal data, but not so for the estimation of the residual standard deviation in the case of small sample size. As an alternative to RSS, this paper considers the best linear unbiased estimators based on order statistics from a ranked set sample (BLUE-ORSS) and shows that BLUE-ORSS is uniformly more efficient than BLUE-RSS and BLUE-OS for normal data.

Authors

Li T; Balakrishnan N

Journal

Journal of Statistical Computation and Simulation, Vol. 78, No. 12, pp. 1267–1278

Publisher

Taylor & Francis

Publication Date

January 1, 2008

DOI

10.1080/00949650701756872

ISSN

0094-9655

Contact the Experts team