Increased TUNEL staining in brains of autoimmune Fas-deficient mice Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Profound changes in brain morphology and behavior coincide with the spontaneous development of systemic autoimmune/inflammatory disease in Fas-deficient MRL-lpr mice. The dendrites atrophy, the density of hippocampal and cortical neurons decreases, and an anxious/depressive-like behavior emerges while lymphoid cells infiltrate into the choroid plexus of MRL-lpr mice. We hypothesized that the inherited lack of the Fas-dependent anti-inflammatory mechanism would lead to unsuppressed immune activity, characterized by reduced apoptosis in the MRL-lpr brain. Using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeled (TUNEL) method as an indicator of apoptosis, a surprisingly high incidence of TUNEL-positive cells was observed in the hippocampus, choroid plexus and periventricular regions of MRL-lpr mice, 5-10-fold higher than that found in the MRL +/+ control brain. Immunostaining with anti-CD3, CD4 and CD8 monoclonal antibodies showed limited overlap between CD-positive and TUNEL-positive cells, suggesting that the dying cells are for the most part (approximately 70%) not T-lymphocytes. Although further characterization of the phenotype of the dying cells and the mechanism of cell death are required, the present results suggest the involvement of a Fas-independent apoptotic process in neurodegeneration induced by systemic autoimmune disease.

publication date

  • May 2000

has subject area