Home
Scholarly Works
The trace inequality and eigenvalue estimates for...
Journal article

The trace inequality and eigenvalue estimates for Schrödinger operators

Abstract

Suppose Φ is a nonnegative, locally integrable, radial function on R n , which is nonincreasing in | x | . Set ( T f ) ( x ) = R n Φ ( x - y ) f ( y ) d y when f 0 and x R n . Given 1 < p < and v 0 , we show there exists C > 0 so that R n ( T f ) ( x ) p v ( x ) d x C R n f ( x ) p d x for all f 0 , if and only if C > 0 exists with Q T ( x Q v ) ( x ) p d x C Q v ( x ) d x < for all dyadic cubes Q, where p = p / ( p - 1 ) . This result is used to refine recent estimates of C.L. Fefferman and D.H. Phong on the distribution of eigenvalues of Schrödinger operators.

Authors

Kerman R; Sawyer ET

Journal

Annales de l’institut Fourier, Vol. 36, No. 4, pp. 207–228

Publisher

Cellule MathDoc/Centre Mersenne

Publication Date

January 1, 1986

DOI

10.5802/aif.1074

ISSN

0373-0956

Contact the Experts team