Home
Scholarly Works
Estimating Aboveground Carbon Dynamic of China...
Journal article

Estimating Aboveground Carbon Dynamic of China Using Optical and Microwave Remote-Sensing Datasets from 2013 to 2019

Abstract

Over the past 2 to 3 decades, Chinese forests are estimated to act as a large carbon sink, yet the magnitude and spatial patterns of this sink differ considerably among studies. Using 3 microwave (L- and X-band vegetation optical depth [VOD]) and 3 optical (normalized difference vegetation index, leaf area index, and tree cover) remote-sensing vegetation products, this study compared the estimated live woody aboveground biomass carbon (AGC) dynamics over China between 2013 and 2019. Our results showed that tree cover has the highest spatial consistency with 3 published AGC maps (mean correlation value R = 0.84), followed by L-VOD ( R = 0.83), which outperform the other VODs. An AGC estimation model was proposed to combine all indices to estimate the annual AGC dynamics in China during 2013 to 2019. The performance of the AGC estimation model was good (root mean square error = 0.05 Pg C and R 2 = 0.90 with a mean relative uncertainty of 9.8% at pixel scale [0.25°]). Results of the AGC estimation model showed that carbon uptake by the forests in China was about +0.17 Pg C year −1 from 2013 to 2019. At the regional level, provinces in southwest China including Guizhou (+22.35 Tg C year −1 ), Sichuan (+14.49 Tg C year −1 ), and Hunan (+11.42 Tg C year −1 ) provinces had the highest carbon sink rates during 2013 to 2019. Most of the carbon-sink regions have been afforested recently, implying that afforestation and ecological engineering projects have been effective means for carbon sequestration in these regions.

Authors

Chang Z; Fan L; Wigneron J-P; Wang Y-P; Ciais P; Chave J; Fensholt R; Chen JM; Yuan W; Ju W

Journal

Journal of Remote Sensing, Vol. 3, ,

Publisher

American Association for the Advancement of Science (AAAS)

Publication Date

January 1, 2023

DOI

10.34133/remotesensing.0005

ISSN

2694-1589

Labels

Sustainable Development Goals (SDG)

View published work (Non-McMaster Users)

Contact the Experts team