Reproductive and stress hormone levels in goldfish (Carassius auratus) exposed to oil sands process-affected water Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Athabasca oil sands mining in northern Alberta produces process-affected waters that are characterized by the presence of naphthenic acids, polycyclic aromatic hydrocarbons, and high salinity. The purpose of this study was to examine the impact of these process-affected waters on reproductive and stress related endpoints in mature goldfish, Carassius auratus. In two separate studies, testosterone and 17beta-estradiol levels in the plasma were significantly reduced in both male and female goldfish caged for 19 days in process-affected waters relative to controls. This effect was most pronounced in goldfish caged at a site containing mature fine tailing and tailings pond water (P5). Ovarian and testicular tissues from fish in the caging studies were incubated in vitro to evaluate potential differences in basal steroid production levels and responsiveness to human chorionic gonadotropin (hCG). Basal levels of testosterone were reduced significantly in males and females from P5 compared with the control pond (P1) demonstrating that the gonads from exposed fish had a diminished steroidogenic capacity. Gonadal tissues of fish from all ponds responded similarly to hCG suggesting that the steroid biosynthetic pathway remained functionally intact. Plasma cortisol levels were significantly higher in male goldfish caged in a pond containing mature fine tailings and capped with uncontaminated water (P3) and in P5 compared with P1. Collectively, these studies suggest that waste products of oil sands mining have the potential to disrupt the normal endocrine functioning in exposed fish through alterations to both reproductive and glucocorticoid hormone biosynthesis. In additional laboratory studies, exposure of goldfish to a naphthenic acid extract for 7 days failed to replicate the effects of processes-affected waters on plasma steroid levels and the causative agent(s) responsible for the effects on steroid biosynthesis remains to be identified.

publication date

  • May 2008