Investigating the Role of Endothelial Glycogen Synthase Kinase3α/β in Atherogenesis in Low Density Lipoprotein Receptor Knockout Mice Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Risk factors for developing cardiovascular disease (CVD) are associated with inflammation and endothelial activation. Activated endothelial cells (ECs) express adhesion proteins that recruit monocytes to the subendothelial layer initiating plaque development. Understanding the mechanism(s) by which ECs increase adhesion protein expression will facilitate the development of therapies aimed at preventing CVD progression and mortality. Glycogen synthase kinase (GSK)3α/β are constitutively active kinases which have been associated with many cellular pathways regulating cell viability and metabolism. While roles for myeloid GSK3α/β in the development of atherosclerosis have been established, there is limited knowledge on the potential roles of endothelial GSK3α/β. With the use of Cre recombinase technology, GSK3α/β was knocked out of both ECs and macrophages (Tie2Cre GSK3α/βfl/fl LDLR−/−). A bone marrow transplant was used to replenish GSK3α/β in the myeloid lineage allowing the assessment of an endothelial-selective GSK3α/β knockout (BMT Tie2Cre GSK3α/βfl/fl LDLR−/−). In both models, adhesion protein expression, macrophage recruitment and plaque volume were reduced in GSK3α knockout mice. GSK3β knockout had no significant effect. Results from this study are the first to suggest a pro-atherogenic role of endothelial GSK3α and support existing evidence for targeting GSK3α in the treatment of atherosclerotic CVD.

publication date

  • November 26, 2022