Selective cytotoxicity of Pancratistatin-related natural Amaryllidaceae alkaloids: evaluation of the activity of two new compounds Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Abstract Background Pancratistatin (PST), a compound extracted from an Amaryllidaceae (AMD) family plant, has been shown to specifically induce apoptosis in cancer cells with no/minimal toxic effect on normal cells. A systematic synthetic approach has indicated that the minimum cytotoxic pharmacophore comprises the trans-fused b/c-ring system containing the 2, 3, 4-triol unit in the C-ring. To further explore the structure-activity relationship of this group of compounds we have investigated the anti-cancer efficacy and specificity of two PST-related natural compounds, AMD4 and AMD5. Both of these compounds lack the polyhydroxylated lycorane element of PST instead having a methoxy-substuituted crinane skeleton. Results Our results indicate that AMD5 has efficacy and selectivity similar to PST, albeit at a 10-fold increased concentration. Interestingly AMD4 lacks apoptotic activity. Conclusion Our results indicate that the phenanthridone skeleton in natural Amaryllidaceae alkaloids may be a significant common element for selectivity against cancer cells; furthermore, the configuration of the methoxy-side groups is responsible for higher binding affinity to the target protein/s thus making for a more efficient anti-cancer agent.

authors

  • Griffin, Carly
  • Sharda, Natasha
  • Sood, Divya
  • Nair, Jerald
  • Mcnulty, James
  • Pandey, Siyaram

publication date

  • December 2007