A novel synthetic C-1 analogue of 7-deoxypancratistatin induces apoptosis in p53 positive and negative human colorectal cancer cells by targeting the mitochondria: enhancement of activity by tamoxifen Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The natural compound pancratistatin (PST), isolated from the Hymenocallis littoralis plant, specifically induces apoptosis in many cancer cell lines. Unlike many other chemotherapeutics, PST is not genotoxic and has minimal adverse effects on non-cancerous cells. However, its availability for preclinical and clinical work is limited due to its low availability in its natural source and difficulties in its chemical synthesis. Several synthetic analogues of 7-deoxypancratistatin with different modifications at C-1 were synthesized and screened for apoptosis inducing activity in human colorectal cancer (CRC) cells. We found that a C-1 acetoxymethyl derivative of 7-deoxypancratistatin, JC-TH-acetate-4 (JCTH-4), was effective in inducing apoptosis in both p53 positive (HCT 116) and p53 negative (HT-29) human CRC cell lines, demonstrating similar efficacy to that of natural PST. JCTH-4 was able to decrease mitochondrial membrane potential (MMP), increase levels of reactive oxygen species in isolated mitochondria, cause release of the apoptogenic factor cytochrome c (Cyto c) from isolated mitochondria, and induce autophagy in HCT 116 and HT-29 cells. Interestingly, when JCTH-4 was administered with tamoxifen (TAM), there was an enhanced effect in apoptosis induction, reactive oxygen species (ROS) production and Cyto c release by isolated mitochondria, and autophagic induction by CRC cells. Minimal toxicity was exhibited by a normal human fetal fibroblast (NFF) and a normal colon fibroblast (CCD-18Co) cell line. Hence, JCTH-4 is a novel compound capable of selectively inducing apoptosis and autophagy in CRC cells alone and in combination with TAM and may serve as a safer and more effective alternative to current cancer therapies.

authors

  • Ma, Dennis
  • Tremblay, Phillip
  • Mahngar, Kevinjeet
  • Akbari-Asl, Pardis
  • Collins, Jonathan
  • Hudlicky, Tomas
  • Mcnulty, James
  • Pandey, Siyaram

publication date

  • June 2012

has subject area