Dynamics of benzimidazole ethylphosphonate: a solid-state NMR study of anhydrous composite proton-conducting electrolytes Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Imidazole phosphate and phosphonate solid acids model the hydrogen-bonding networks and dynamics of the anhydrous electrolyte candidate for proton exchange membrane fuel cells. Solid-state NMR reveals that phosphate and phosphonate anion dynamics dominate the rate of long-range proton transport, and that the presence of a membrane host facilitates proton mobility, as evidenced by a decreased correlation time of the composites (80 ± 15 ms) relative to the pristine salt (101 ± 5 ms). Benzimidazole ethylphosphonate (Bi-ePA) is chosen as a model salt to investigate the membrane system. The hydrogen-bonding structure of Bi-ePA is established using X-ray diffraction coupled with solid-state (1)H-(1)H DQC NMR. The anion dynamics has been determined using solid-state (31)P CODEX NMR. By comparing the dynamics of ethylphosphonate groups in pristine salt and membrane-salt composites, it is clear that the rotation process involves three-site exchange. Through data interpretation, a stretched exponential function is introduced with the stretching exponent, β, ranging 0 < β ≤ 1. The (31)P CODEX data for pristine salt are fitted with single exponential decay where β = 1; however, the data for the membrane-salt composites are fitted with stretched exponential functions, where β has a constant value of 0.5. This β value suggests a non-Gaussian distribution of the dynamic systems in the composite sample, which is introduced by the membrane host.

publication date

  • 2013