abstract
- Bathophenanthrolinedisulfonate (BPS) complexes of technetium(I) of the type [Tc(CO)3(BPS)(L)]n (L = imidazole derivatives) were synthesized and evaluated both in vitro and in vivo. [99mTc(CO)3(BPS)(MeIm)]- (MeIm = 1-methyl-1H-imidazole) was prepared in near-quantitative yield using a convenient two-step, one-pot labeling procedure. A targeted analogue capable of binding regions of calcium turnover associated with bone metabolism was also prepared. Here, a bisphosphonate was linked to the metal through an imidazole ligand to give [99mTc(CO)3(BPS)(ImAln)]2- (ImAln = an imidazole-alendronate ligand) in high yield. The technetium(I) complexes were stable in vitro, and in biodistribution studies, [99mTc(CO)3(BPS)(ImAln)]2- exhibited rapid clearance from nontarget tissues and significant accumulation in the shoulder (7.9 ± 0.2% ID/g) and knees (15.1 ± 0.9% ID/g) by 6 h, with the residence time in the skeleton reaching 24 h. A rhenium analogue, which is luminescent and has the same structure, was also prepared and used for fluorescence labeling of cells in vitro. The data reported demonstrate the potential of this class of compounds for use in creating isostructural optical and nuclear probes.